Focus 半導体製造装置市場

《半導体製造装置市場の最新動向》

後工程装置市場の分析と展望成長のキーワードは"微細化"

微細加工研究所 所長 湯之上 隆

半導体製造装置の前工程市場は、2000年のITバブルの時のピークに近づいている。一方、後工程市場は、2010年以降そのピークの60~40%の範囲を推移している。装置ごとに分析してみると、 そのピークを超えている装置群、 そのピークに近づいている装置群、 そのピークを超えられない装置群、 特異的な装置群の4つに分類できる。前工程では と に属する成長性の高い装置が4種類ずつあるのに対して、後工程には1種類ずつしかない。これが、前工程と後工程の市場成長性の差となっている。また、市場成長性の高い に属する装置に共通するキーワードは、"微細化"である。

前工程と後工程の世界市場比較

世界半導体市場も製造装置市場も、2000年のITバブルの時に、大きなピークがあった。

このピークの時の世界市場を、100として規格化したグラフを描くと、半導体市場はそのピークを超えて右肩上がりに成長しているのに対して、装置市場はそのピークを超えられないことがわかる(図1)。

この装置市場を前工程と後工程に分離して、2000年の値で規格化したグラフを描いてみた(図2)。その結果、前工程市場は、乱高下はあるものの、2007年および2011年は一時的にピークを超え、全体として2000年のピークに近づいている。

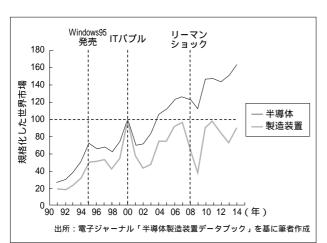


図1 2000年で規格化した半導体および製造装置の世界市場

一方、後工程市場は、乱高下の傾向は前工程市場と一致しているが、2000年のピークに近づくことはなく、2010年以降はピーク時の60~40%の範囲を推移している。

以上から、今後、前工程市場は2000年のピーク を超えることが期待できるが、後工程市場にはそ の期待はできない。

後工程では、ウェーハからチップを切り出し、 検査を行い、パッケージングする。そのチップ数 は、毎年増加している。従って、後工程装置の数 も増加しているはずである。それにもかかわらず、 後工程市場が縮小しているということは、後工程 装置が大幅なスループット向上を実現し、装置価

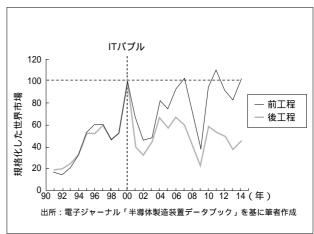


図2 2000年で規格化した前工程と後工程の世界市場

Focus 半導体製造装置市場

表1	前工程装置および後工程装置の分類	(出所:電子ジャーナル「半	導体製造装置データブック」を基に筆	者作成)

	前工程等	置	後工程装置	
ケース 2000年のピークを	露光装置	洗浄・乾燥装置	ダイサ	
超えた装置群	高電流イオン注入装置	ウェーハ欠陥検査装置		
ケース 2000年のピークに	コータ&デベロッパ	ドライエッチング装置	ダイボンダ	
近づいている装置群	酸化・拡散炉	中電流イオン注入装置		
	アッシング装置	ランプアニール装置	ワイヤボンダ	TABボンダ
ケース	高エネルギーイオン注入装置	減圧CVD装置	モールディング装置	ロジックテスタ
2000年のピークを 超えられない装置群	プラズマCVD装置	メタルCVD装置	メモリテスタ	ミクストシグナルテスタ
E/C 54 VISV IX EUT	スパッタリング装置	エピタキシャル装置	プローバ	ハンドラ
	CMP			
ケース 特異的な装置群	常圧CVD装置	Cuめっき装置	マーキング装置	バーンイン装置

図3 ケース 2000年のピークを超えた装置群

格が低下しているためと考えられる。

4つのケースへの分類

2014年12月号の記事で、前工程の装置1つ1つについて分析してみると、 2000年のピークを超えている装置群、 2000年のピークに近づいている装置群、 2000年のピークを超えられない装置群、

上記のどれにも属さない特異的な装置群、以上の4つのケースに分類できることを紹介した¹⁾。

そこで本稿では、後工程の装置について、同様の分析を試みた。その結果、前工程装置と同様に、 後工程装置も4つのケースに分類できることがわかった。以下にその詳細を示す。

ケース: 2000年のピークを超えた装置群 2000年のピークを超えたと言える装置群は、前 工程では露光、洗浄・乾燥、ウェーハ欠陥検査装

図4 ケース 2000年のピークに近づいている装置群

置など4種類あるが、後工程ではダイサ1種類である(表1、図3)。

ダイシングにおいては、より小さなチップの切断、より狭いスクライブラインでの切断が求められている。また、Cu/Low-kは通常のダイヤモンドブレードの切断が困難なため、レーザダイシングが使われている。このような技術革新のために、装置台数とともに価格も上昇し、2000年のピークを超えたものと思われる。

ダイサの市場は2010年に、2000年のピークを大きく超えた。2013年にわずかにピーク値を下回ったが、今後、ピークを超えて成長しそうである。

ケース: 2000年のピークに近づいている装置群 2000年のピークに近づいている装置群は、前工程ではコータ&デベロッパ、ドライエッチング装置、酸化・拡散炉、中電流イオン注入装置の4種類ある

Focus 半導体製造装置市場

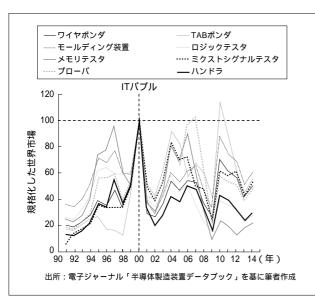


図5 ケース 2000年のピークを超えられない装置群

が、後工程ではダイボンダ1種類である(表1、図4)。 ダイボンダ市場は、2010年に一時的に2000年の ピークを超えた。2010年以降は、2000年のピーク ~80%の範囲を推移するのではないか。

ケース: 2000年のピークを超えられない装置群 2000年のピークを超えられない装置群が、前工 程でも後工程でも、最も多い。前工程では、スパ ッタリングやCVD装置などの成膜関係の装置がほ とんどすべて、このケースに属している(表1)。

後工程では、ワイヤボンダ、TABボンダ、モー ルディング装置、ロジックテスタ、メモリテスタ、 ミクストシグナルテスタ、プローバ、ハンドラが このケースに属している(図5)。

2007年にプローバが、2010年にTABボンダが、 一時的に2000年のピークを超えたが、今後は2000 年のピークの60~20%の範囲を推移しそうである。 2000年のピークを超えることは、難しそうである。

ケース : 特異的な装置群

ケース ~ のいずれにも当てはまらない特異 的な装置群は、前工程では、常圧CVD装置とCuめ っき装置である(表1)。後工程では、マーキング 装置とバーンイン装置がこのケースに属する(図 6)

マーキング装置もバーンイン装置も、2000年よ り前に、それを超えるピークがある。特に、バー

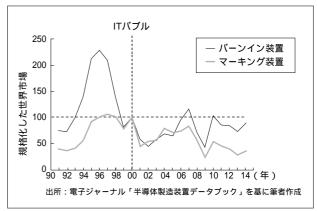


図6 ケース 特異的な装置群

ンイン装置の1996年のピークは突出している。 2000年以降、DRAMなどメモリにおいては、特に 海外メーカーは、バーンインを行わなくなったこ とが背景にあると考えられる。

"微細化"に関する装置は市場が成長

表1に示したように、前工程も後工程も、2000年 のピークを超えられない装置群 (ケース)が最 も多かった。一方、2000年のピークを超えた装置 群(ケース)は、前工程が4種類あるのに対して、 後工程はダイサ1種類しかなかった。また、2000年 のピークに近づいている装置群(ケース)も、 前工程が4種類あるのに対して、後工程はダイボン ダ1種類しかなかった。

このような差が、前工程と後工程の装置市場の 成長性の差に直結している。また、前工程と後工 程を通して見ると、2000年のピークを超えて成長 が期待できる装置群(ケース)は、"微細化"を 推進している露光装置、"微細化"により微小パー ティクルの除去が必要になった洗浄・乾燥装置、 "微細化"により微小欠陥を検出しなければならな くなったウェーハ欠陥検査装置、"微細化"により Cu/Low-kの切断が必要になり、微小チップをダイ シングしなければならなくなったダイサである。

これらの装置に共通しているキーワードは、"微 細化"である。"微細化"の推進のために技術革新 が必要な装置は、市場が成長するということであ る。

参考文献

1) 湯之上隆: Electronic Journal (2014.12) pp. 34-36