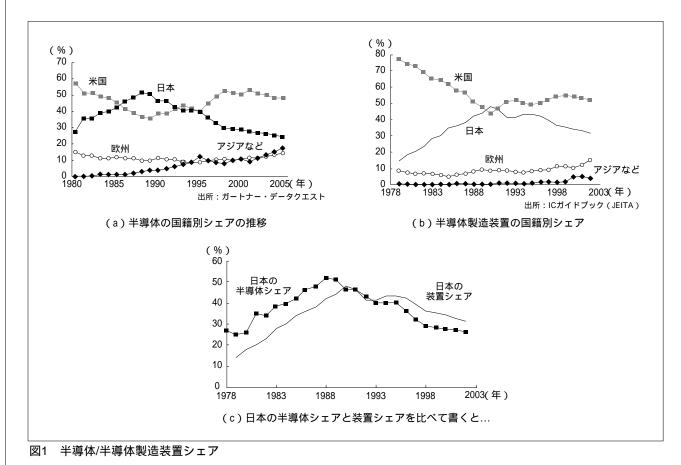
《日本半導体/製造装置メーカーの共進化/共退化現象》

共生関係で築いた最強の地位だが 90年半ば以降は"共退化"が進む


㈱エフエーサービス 半導体事業部 技術主幹 湯之上 隆

1980~90年代にかけて、日本半導体メーカーと日本製造装置メーカーは、ともにシェアを拡大 した。両者が密接に協力し合い、高品質、高性能なDRAM製造に最適な装置およびプロセスを 開発することにより、どちらも最強の地位を築いた。つまり、" 共進化 " した。ところが、90 年半ば以降は両者ともに揃ってシェアを低下させ、"共退化"とも言うべき現象が起きた。代わ って、台湾TSMCと蘭ASMLが共進化しているように見える。本稿から3回連載で、半導体メー カーと装置メーカーとの間の"共進化"または"共退化"現象について考察する。

日本の半導体/製造装置の動向は一致

を並べてみると、その傾向に共通点があることに気

がつく。そこで、日本の半導体シェアおよび装置シ 半導体の国籍別シェアのグラフ(図1(a))と、半 ェアを、同一グラフ上に描いてみた(図1(c))。 す 導体製造装置の国籍別シェアのグラフ(図1(b)) ると、3年程度のずれはあるものの、2つのシェアの 動向がピタリと一致していることがわかる。これ

Focus 半導体業界

は何を意味しているのだろうか?

「半導体(特にDRAM)は、装置を 買えば誰でも作れる」というのは、大 きな間違いである。しかし、そのよう に思われてしまうほど、半導体が製造 装置に大きく依存している産業である のは疑いようがない。半導体産業と装 置産業の動向が一致しているというこ とは、両産業間に、何らかの相互作用 があったと推定できる。つまり、日本 半導体産業が凋落した原因の1つに、日 本の装置産業の影響があったのではな いか? またはその逆で、日本の装置産 業がシェアを落としたのは、日本半導 体産業に責任があったのではないか?

相互の影響下で進化が進む共進化現象

生物学用語に、"共進化 (Co-evolution)"という 言葉がある。"共進化"とは、2つの種の間で、そ れぞれの進化が、相互の影響の下で進行する状態 を言う。代表的な例として、昆虫と被子植物の共 進化があるい。

現在、昆虫は、動物種の2/3を独占し、その数お よび種ともに陸の王者と言える。一方、花をつけ る被子植物は、藻類も含めた植物種の80%を占め、 植物界の王者となっている。このように、どちら も、動物種および植物種の王者となり得たのは、 両者が共生関係を結んだことによると説明されて いる。このことを少し詳しく説明する。

植物の進化の過程

まず、植物の進化においては、コケ類およびシ ダ類が、海から陸上に進出することに成功した。 しかし、受精するためには、水が必要であるため、 その生息区域は水辺に限定された。水辺からの離 脱に成功したのは、ソテツやイチョウなどの裸子 植物である。裸子植物の花粉は風によって運ばれ る。自らの完全離脱に成功したものの、受粉でき るか否かは、文字通り"風まかせ"であり、受粉 確率が非常に低い欠点があった。従って、生息区 域を拡大し、さらに種が進化していくためには、 もっと効率的に受粉できる仕組みが必要であった。

昆虫の進化の過程

図2 昆虫と被子植物の"共進化"現象

一方、昆虫はどのように進化してきたのか? 昆 虫が陸の王者になるために、まず、次の3条件が必 要であったという。まず、動物種が、海から陸上 に進出するためには、水分の蒸発から身を守る必 要があった。昆虫は、軽くて堅いキチン質の外骨 格を手に入れた。この外骨格が水分の蒸発を防止 し、乾燥に耐えることができるようになった。次 に、昆虫は羽根を手に入れた。飛翔能力を身に着 けたことにより、天敵からの逃亡、および新たな 餌場や繁殖場所の捜索が、圧倒的に有利になった。 幼虫 さなぎ さらに、卵 成虫 卵、の完 全変態のサイクルで、種の保存を行うようになっ た(さなぎの過程がない不完全変態の昆虫もいる が、完全変態種の方が優位)。幼虫は、ひたすら食 べて成長することに専念する。成虫は、もっぱら 繁殖活動を行う。つまり、完全変態により、成長 と繁殖の完全分離を実現した。その際、問題にな ったのは、成虫のエネルギー源の確保であった。 すなわち、成虫が飛翔し、繁殖相手を探し、産卵 に最適な場所を捜索するためのエネルギー源をど こから補給するかが問題であった。

植物と昆虫の共進化

ここで、被子植物と昆虫は、共生関係を結ぶ戦 略に出た。被子植物は、昆虫に蜜というエネルギ -源を提供する。その代わり、昆虫は花粉を運搬 する(図2)。この共生関係により、被子植物も昆 虫も、爆発的に種の数を増大させ、それぞれのカ

Focus 半導体業界

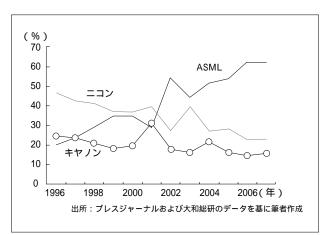


図3 露光装置市場の世界シェア(売上高ベース)

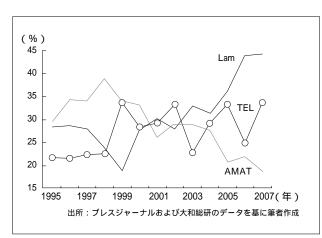


図4 露光装置市場の世界シェア (売上高ベース)

テゴリーにおける王者となった。つまり、被子植 物と昆虫は、"共進化"したのである。

半導体メーカーと装置メーカーの共進化現象

日本の半導体と製造装置のシェアが同じ傾向を 示していることが、この"共進化"という概念を 使って説明できる。1970年代後半~90年にかけて は、日本半導体メーカーと日本製造装置メーカー が、共進化していたと考えられる。実際に、露光 装置メーカーと、半導体メーカーは、協力し合う ことによって、それぞれが最強の地位を築いてい った。例えば、NECとニコン、東芝とニコン、日 立製作所とキヤノンなどが、互いに密に協力し合 って、高性能、高品質DRAMを製造するために最 適なステッパを開発した。また、ドライエッチン グにおいても、東芝と東京エレクトロン、日立と 東京エレクトロンが密接に協力し合って、それぞ

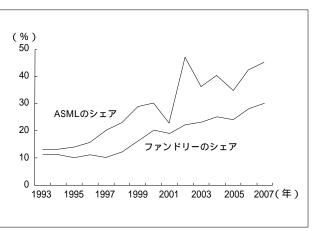


図5 ASMLとTSMCは"共進化"している?

れ、マグネトロン方式のDRMエッチャ、狭電極方 式のIEMエッチャを開発した。

1990年半ば以降は"共退化"

ところが、1990年代半ば以降、日本半導体も製 造装置も、どちらもシェアが低下した。特に、露 光装置分野では、長らくトップシェアを誇ってい たニコンは、2001年を境に、その座を蘭ASMLに追 い落とされてしまった(図3)。また、ドライエッチ ング分野においても、東京エレクトロン(TEL)が、 米Lam Researchにトップシェアの座を奪われた(図 4)。日本半導体産業と装置産業の間には、共進化 とは逆の現象が起きているように見える。これを、 "共退化"と名づけることにする。

では、この時代から現在にかけて、共進化を起 こしている半導体メーカーおよび装置メーカーは どこか? 筆者は、図5に示すように、Taiwan Semiconductor Manufacturing (TSMC) とASMLが共進化 しているのではないかと考える。次号では、日本 の露光装置メーカーがトップシェアから滑り落ち てしまった現象について、原因を追求する。

謝辞

"共進化"という概念を、筆者に教えてくれたのは、 日立ハイテクノロジーズの鈴木学氏である。ここ に、感謝申し上げる。

参考文献

1) 水波誠:昆虫-驚異の微小脳、中公新書