Focus 半導体技術

《CMOSがCCDを上回ったイメージセンサ市場》

混戦模様のCMOSセンサ市場 破壊的イノベーション創出に期待

㈱エフエーサービス 半導体事業部 技術主幹 湯之上 隆

CCDセンサか? CMOSセンサか? 21世紀に入って、カメラモジュールの主役をめぐる技術開 発が激化した。特に、携帯電話用については、当初CMOSが先行したが、画素数や画質への要 求によりCCDがシェアを伸ばした。ところが、CMOSの性能がCCDに追いつき始めたことか ら、再びCMOSが優勢となり始めた。CCDとCMOSの世界市場規模の年次推移を見ると、 2008年のリーマンショックを境に、市場規模が逆転(図1)。CCDが飽和する傾向にあるのに 対して、CMOSは成長し続ける模様である。イメージセンサは、半導体市場全体の中では数% と小規模ながら、日本、特にソニーが技術開発をリードし、トップシュアを握ってきた分野で ある。本稿では、CCD、CMOSそれぞれの分野の勢力図を明らかにするとともに、今後も日本 が世界をリードしていくためには何が必要かを論じる。

日本メーカーが独占しているCCDセンサ

CCDは、1969年に米ベル研究所のW. S. BoyleとG. E. Smithなどによって発明された。彼らはこの業績 によって、2009年にノーベル物理学賞を受賞した。

CCDとは本来、複数のMOS構造下に連続した空 乏層を形成させ、ある1つの電極下に導入した電荷 を隣の電極下に転送する電荷結合素子のことを意 味する。そのため、またの名を電荷転送素子とも いう。このCCDは、転送する電荷量がアナログ的 であり、光電変換素子と同じ動作をするため、イメ -ジセンサへの採用が検討されることになった゚)。

ところが、CCDの技術開発は困難を極めた。歩 留りを向上させることができないことなどから、 米国企業が次々と脱落していったという20。そのよ うな中、執念深く技術開発を進め、製品化への壁 を打破したのは、ソニーを筆頭とする日本メーカ ーだった³シ。 その結果、CCDは、ビデオカメラ、デ ジタルスチルカメラ、監視カメラ、リニアセンサ、 デジタル一眼レフカメラなど、様々な用途に広が った。すなわち、ソニーをはじめとする日本メー カーは、CCDにおいて、新たな市場を切り開き、 イノベーションを起こしたと言える。

その結果として、現在、CCDにおいては、ユニ ットシェアも売上高シェアも、日本メーカーが独 占している(図2)。特に、70年代当初から技術開 発を牽引してきたソニーは、ユニットおよび売上 高シェアともに50%を超えており、圧倒的な存在 感を示している。

CMOSではOmniVisionが成長

70年代、CCDとパッシブピクセル型MOSセンサ が、激しい技術開発争いをした。80年代に入って、 S/N比においてCCDに軍配が上がり、パッシブピク セル型MOSセンサの開発は一旦幕を閉じた。

ところが、80年代後半に入って、日本では増幅 型イメージセンサの開発が始まった。また、海外 では、LSIではお馴染みのCMOSをベースにした CMOSセンサの開発が主流になった。CMOSセンサ は、当初パッシブ型が主流だったが、次第にS/N比

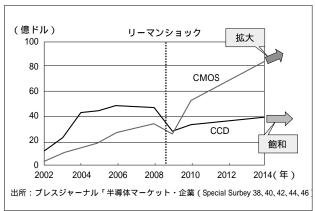


図1 イメージセンサの世界市場規模

Focus 半導体技術

に有利な増幅型のアクティブピクセル型に移行した。つまり、日本の増幅型という技術と、海外のCMOSベースという技術が融合したことになるか。

次に、2000年以降のCMOSの 企業別シェアを見てみよう(図 3)。DRAMのCMOS製造技術を 上手く転用した米Aptina Imagingが、2006年にユニットおよ び売上高ともに、25%を超える トップシェアを獲得している。 ところがその後、ユニットシェ アにおいては、米OmniVision Technologiesおよび韓国Samsung Electronicsが急成長し、2009年 にはAptinaを追い抜いてトップ シェア争いを演じている。東芝、 ソニー、キヤノンなどの日本メ ーカーは、ユニットシェアでは 下位に沈んでいる。

一方、売上高シェアにおいて は、Apinaが凋落し、2009年に ソニーがトップに躍り出た。ま た、OmniVisionおよびSamsung もこれに続き、Aptinaを追い抜 く気配である。

日本メーカーの強みと弱み

CCDでは、日本メーカー、特にソニーが圧倒的シェアを占めている。高画質、高性能、高品質のCCDでは、他の追随を許さない強固な地位を確立している。ところが、CCD市場規模は飽和傾向にある。

一方、携帯電話用カメラとしての地位を確立したCMOSは、市場規模でCCDを上回り、今後も成長が続くと予想される。CMOSの売上高シェアで、2009年にソニーがトップに躍り出た。しかし、ユニットシェアでは、OmniVision、Samsung、Aptinaがトップシェア争いをしており、ソニーをはじめとする日本メーカーのシェアは低い。

2009年のCMOS市場で、ソニーの売上高シェアは22%とトップであるが、ユニットシェアは4.7%に過ぎない。ここから、ソニーのCMOSは、ユニット1個当たりの単価が高い高付加価値製品であると推測できる。つまり、ソニーは、CCDもCMOSも、高画質、高性能、高品質な高付加価値製品で、世

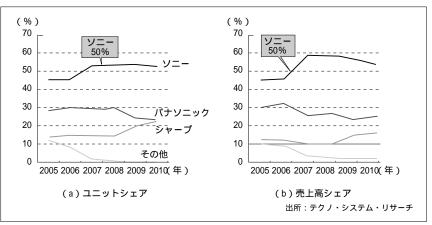


図2 CCDのユニットシェアと売上高シェア

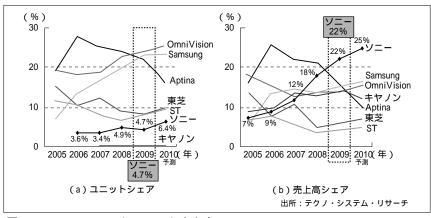


図3 CMOSのユニットシェアと売上高シェア

界トップの座にあると言えよう。 ソニー(つまり日本)の死角はどこにあるのか?

イノベーションのジレンマの懸念

かつて、日本半導体メーカーはメインフレーム 用に25年保証の高品質DRAMを製造して、DRAM の世界シェア80%を占めるに至った。ところが、 コンピュータ業界にパラダイムシフトが起き、メ インフレームに代わってPCが上位市場となった。

この時、Samsungや米Micron Technologyは、PC用DRAMを破壊的に安価に大量生産した。一方、主要顧客がメインフレームメーカーであった日本の半導体メーカーは、相変わらず25年保証の高品質DRAMを作り続けてしまった。その結果、コスト競争に敗れ、エルピーダメモリ1社を残して撤退に追い込まれてしまった。。

すなわち、米ハーバード大学ビジネススクール 教授 クリステンセン氏が言うところの"イノベーションのジレンマ"が起きたのである⁶⁾。破壊的技 術がイノベーションを起こす時、持続的技術を駆

Focus 半導体技術

逐する。その破壊的技術は、高性能・ 高品質とは限らない。むしろ、ちょっ と性能や品質が劣る場合が多い。その 代わり、"小さい、安い、使いやすい" などの特徴を持つ場合が多い。

イメージセンサにおいて、高付加価 値路線を走っているように見えるソニ ーに対しては、イノベーションのジレ ンマに陥ることが最大の懸念点であ

海外メーカーの強み

高付加価値技術で先行しているソニ ーなど日本メーカーに対して、CMOS のユニットシェアで上位に位置する OmniVision、Samsung、Aptinaには、ど んな強みがあるのか?

OmniVision

OmniVision自体はファブレスであり、製造は Taiwan Semiconductor Manufacturing (TSMC) に委 託している。当初、CMOSセンサのようなデリケー トなデバイスは、ファンドリーではできないと思 われていた。ところが、さほど高画質・高性能は 必要がない携帯電話用に便乗してユニットシェア を拡大してきた。

TSMCの黎明期に次のような逸話がある。87年創 設のTSMCは、手始めに見よう見まねでDRAMを作 ってみた。これを米Hewlett-Packard (HP) や米 IBMに持ち込んだが、ビット欠けはあるわ、信頼 性は貧弱だわ、ということで問題外の評価を受け た。ところが、彼らがしたたかなのは、その出来 損ないのDRAMでも売り先はないかと探し、市場 を見つけ出してしまうところにある。その市場と は、オーデイオプレーヤ業界である。例えば、CD プレーヤの場合、CDに書き込まれた情報を、一度 RAMに転送し、これを音声情報に変換する。そこ に使われるRAMなら、多少のビット欠けも、少々 の信頼性の悪さも問題にならない。彼らはこの RAMを、「オーデイオRAM (A-RAM)」と称した という。このようにして、A-RAM市場を見つけ出 したTSMCは、A-RAMを量産した。量産するうち に次第に技術が蓄積していき、まともなDRAMも 製造できるようになっていったという。

OmniVision-TSMC連合が製造しているCMOSセン サも、最初はたいした性能ではないかもしれない。 しかし、量をこなすうちに、技術は蓄積し、やが て、高性能製品もできるようになる可能性は高い。

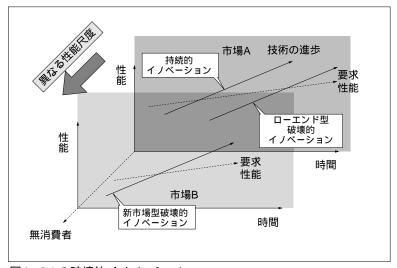


図4 2つの破壊的イノベーション

特に、昨今のTSMCは、LSIのプロセス技術におい て、最早、日本を凌駕している。OmniVision-TSMC連合を侮ることはできない。

Samsung

現在、Samsungのプロセス技術を侮っている人は いないであろう。資金力、意思決定の迅速さなど、 恐るべき半導体メーカーになってしまった。しか し、筆者が最も脅威に思うのは、Samsungのマーケ ティング力である。先進国から新興諸国まで、最 も優秀な社員を、現地駐在のマーケッターとして 送り込む。例えば、インドに送り込まれたマーケ ッターは、インドに住み、インドの言葉を話し、 インド人と同じ食事をし、インド人の生活様式や 文化を身体で学ぶ。最初の1年間は、それが仕事と なる。そのようにしてインドを理解した上で、イ ンド人が好むモノ、インド人が必要とするモノ、 インド人が買いたいと思うモノを特定し、いつま でに、いくらで、何個作れと指示を出すのである。 つまり、Samsungのマーケッターは、市場を創り出 すのである。

その結果、インドの家電製品売り場は、Samsung 製品であふれている。例えば、鍵がかかる冷蔵庫 (泥棒が多い) 瞬停電機構付き冷蔵庫(停電が多 い)、クリケットのスコア表示機能付きTV(インド 人は国技であるクリケットをTVで見るのが好き、 しかし競技時間が長いため時々チャンネルを変え たい、でもクリケットのスコアが気になる)など。 これらの電気製品が、低所得者のために、日本製 の半額で売られるのである。

携帯電話用のCMOSセンサにおいても、このよう なマーケティング力が発揮されていると思われる。

Focus 🔵 半導体技術

「iPhone」用と、BRICsなどの新興諸国の携帯電話 用とで、機能や性能を、ダイナミックに変化させ ているのではないか?

Aptina

Aptinaは、元々Micron Technologyの一部門であっ た。Micronは、90年代後半、破壊的に低コストで DRAMを量産し、Samsungに次いで世界シェア2位 を獲得した。日本半導体メーカーと比較して、約 半分の15枚のマスクでDRAMを製造したその衝撃 は、「マイクロン・ショック」と呼ばれた。筆者も、 在籍していた日立製作所で、マスク枚数の削減に 挑戦させられた1人だが、マスク枚数30枚を20枚に することすらできなかった。それほど、Micronの 低コスト技術は破壊的だった。

Aptinaは、そのようなMicronの"破壊的低コスト 技術"のDNAを受け継いでいる。従って、2007年 以降シェアを落としていると言っても、いつまた 復活してくるか、侮ることはできない。

ソニーをはじめとする日本メーカーへの期待

高付加価値製品を追求する大企業が、瞬く間に 転落するイノベーションのジレンマ。このジレン マを回避し、トップに君臨し続けるにはどうした ら良いのだろうか? それは、トップ企業が破壊的 技術を追求し、トップ企業自らが破壊的イノベー ションを仕掛けること以外にないと考える。

前出のクリステンセン氏は、破壊的技術には、 次の2種類があることを示している(図4) アン゚゚゚ 1つ は、既存市場における圧倒的なローコスト型破壊。 もう1つは、今まで無消費者だった者をターゲット にする新市場型破壊である。

日本が独占し、ソニーが50%を超えるシェアを 有するCCD市場は飽和している。従って、さらな る成長を望むならば、新市場型破壊を起こすしか ない。ソニーは、かつて、トランジスタラジオや 「ウォークマン」によって、新市場型破壊的イノベ −ションを起こしてきた実績がある。視点を変え、 異業種との接点を模索し、先進国だけでなく途上 国にも目を向けて、新市場を見つけ出して欲しい。

また、CMOSでは、新市場型破壊はもちろんのこ と、圧倒的なローコスト破壊も視野に入れるべき である。世界人口は68億人である(図5)。そのう ち、先進国は10億人程度である。新興諸国の中間 層は10~20億人に達し、毎年1億人ずつ増大してい る。ただし、中間層とはいってもその生活レベル は、日本人が想像するものとは全く異なる。その 中間層が必要としているのは、どんなCMOSセンサ

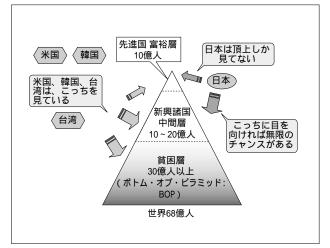


図5 世界68億人には無限の市場がある

さらに、その下には、30億人もの貧困層がある。 このボトム・オブ・ピラミッドにも目を向けよう。 そこには、必ず新たな市場が存在する。

米Intel元会長のアンディ・グローブ氏は言った。 「今日のローエンドでビジネスを失えば、明日には ハイエンドを失う」。米ミシガン大学のC. K. プラ ハラード教授は言った。「企業は"ピラミッドの底 辺にある宝の山"を開拓せよ」。。米Microsoft創業 者のビル・ゲイツ氏は言った。「最も怖いのは AppleやOracleではなく、どこかのガレージで新し い何かを生み出している連中だ」。

今後の、ソニーをはじめとする日本メーカーの 破壊的イノベーション創出に期待したい。

参考文献

- 1) 角南英夫、川人祥二編著:メモリデバイス・イメー ジセンサ、丸善、6章
- 2) 越智成之:イメージセンサのすべて、工業調査会
- 3) 矢野正敏: Semiconductor FPD World(2008.8)pp.36-39
- 4) 前掲書(1)7章
- 5) 湯之上隆:日本「半導体」敗戦、光文社
- 6) クレイトン・クリステンセン: イノベーションのジ レンマ、翔泳社
- 7) クレイトン・クリステンセン:イノベーションの解、 翔泳社
- 8) クリステンセン、アンソニー、ロス:明日は誰のも のか イノベーションの最終解、、ランダムハウス、 講談社
- 9) C. K. プラハラード: ネクスト・マーケット 層」を「顧客」に変える次世代ビジネス戦略 治出版