《日本製造装置産業の活路》

洗浄技術の時代がやって来た 装置/薬液のインテグラル技術

㈱エフエーサービス 半導体事業部 技術主幹 湯之上 隆

半導体製造装置の中で売上高が大きい8分野のうち、装置の標準化、プラットフォーム化、モ ジュール化が必要な分野では、AMAT、ASML、Lamなど欧米メーカーが強みを発揮している。 一方、装置と液体材料の摺り合わせが必要なコータ&デベロッパ、洗浄、CMPにおいては、日 本メーカーがトップシェアを獲得している。この中でも、洗浄は、半導体製造工程の30%以上 を占め、歩留りを左右する最も重要な技術になった。今後、液体と物質界面における反応を分 子・原子レベルから解明する科学的な手法が必要不可欠であり、ここに、日本装置産業の活路 がある。

世界半導体市場の成長は続く

年率10%超で成長してきた世界半導体市場は、 1995年に一旦ブレーキがかかったものの、2000年 のITバブル崩壊後、再び年率7%で成長し始めた (図1)。2008年秋の世界金融恐慌による一時的な落 ち込みはあるが、中国およびインドをはじめとす るアジア市場の成長は依然力強い?。世界の半導体 市場は、新興諸国の旺盛な需要に支えられて、今 後も拡大するだろう。

日本に活路はあるか?

しかし、日本半導体の世界シェアは87年以降、

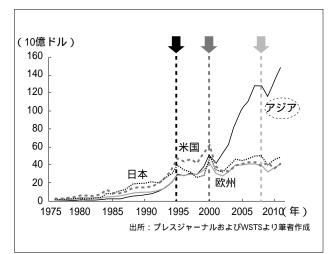


図1 地域別半導体市場の年次推移

低下の一途を辿っている。また、これにリンクし て、日本製造装置の世界シェアも低下しつつある (図2)3%。

日本半導体および装置産業の復権はあるのか? 本稿では、特に装置と要素技術の側面から、日本 の強みがどこにあるのかを分析した上で、日本の 活路を見出す。

主要装置とそのトップシェアメーカー

全ての半導体製造装置の中から、売上高が大き い8分野を図3に示す。露光装置が群を抜き、ドラ イエッチング装置が続いている。

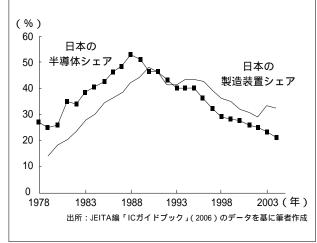


図2 日本半導体および製造装置の世界シェア推移

Focus 半導体産業

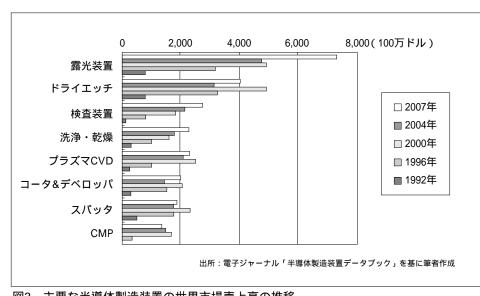


図3 主要な半導体製造装置の世界市場売上高の推移

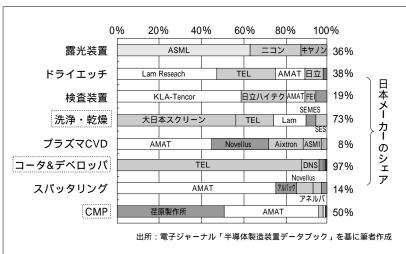


図4 主要な半導体製造装置の世界トップシェアメーカー(2007年)

これら8分野の各々について、トップシェアメー カーを図4に示す。かつてのお家芸である微細加工 分野で、日本はトップから滑り落ちた。露光装置 では蘭ASMLが快走し⁴〉、ドライエッチング装置で は、米Lam Researchがゲート、メタル、酸化膜の3 分野でトップに立ったり。また、検査装置は米 KLA-Tencorに、CVDおよびスパッタなどの成膜装 置は、米Applied Materials (AMAT) に覇権を握ら れてしまった。

しかし、洗浄装置、コータ&デベロッパ、CMP 装置においては、各々、大日本スクリーン製造、 東京エレクトロン(TEL)、荏原製作所が健闘し、 50%を超えるシェアを獲得している。

日本の弱点

主要装置8分野におい て、日本が強い分野と 弱い分野には、どのよ うな違いがあるのか?

露光装置のASML、 ドライエッチング装置 のLam、成膜装置の AMATに共通する戦略 は、標準化、プラット フォーム化、モジュー ル化と言える。

例えば、ASMLは、 露光装置を土台、ステ ージ、レンズ系、光源 などのモジュールに分

割し、これらを外部で製造して、 積み木のように組み立てる。同社 の社員は自社を「アセンブルメー カーだ」と表現している。。また、 LamやAMATは、様々なプロセス チャンバをモジュール化し、標準 化されたプラットフォームに、顧 客の希望通りに設置することがで きるようにしている。

このようなことから考えると、 日本装置メーカーは、装置の総合 的なシステム化に、弱みがあると 言える。

日本の強み

一方、日本が強みを発揮している洗浄装置、コ - タ&デベロッパ、CMP装置には、どのような要 因がその背景にあるのか?

上記装置の共通点として、どれも液体材料を使 うことが挙げられる。洗浄装置には各種薬液、コ - タ&デベロッパにはフォトレジストや塗布膜、 CMPにはスラリーが使われる。そして、これら液 体材料においては(CMPスラリーを除けば) 全て 日本の材料メーカーがトップシェアを握っている (図5)。つまり、日本がトップシェアを占める装置 3分野については、装置単独のシステム化だけでは、 プロセス開発ができないという特徴がある。

Focus 半導体産業

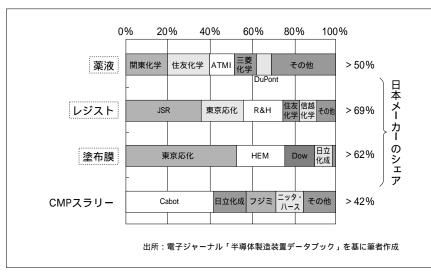


図5 主要な液体材料の世界トップシェアメーカー (2007年)

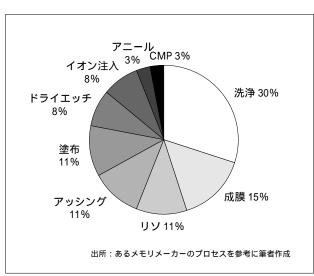


図6 メモリプロセス工程の内訳(検査工程を除く)

装置と液体材料の高度な摺り合わせ(インテグラル)によってのみ、プロセス技術の開発が可能になるのだ。このような摺り合わせ技術は、標準化、プラットフォーム化、モジュール化が難しい。そのため、日本人技術者の繊細さが、依然として競争力の源泉になっているのではないか?

今後の主役は洗浄技術

図6に示したメモリプロセス工程の内訳を見てみると、洗浄工程が最も多く、30%に上る。今後も、洗浄工程は増大し続けるだろう。また、微細化の進展とともに、微小パーティクルの増大、新材料の汚染、電気的ダメージなど、洗浄技術は飛躍的

に難しくなってきた。従って、 今後、歩留りを含めた半導体 デバイスの出来栄えを最も大 きく左右するのは、洗浄技術 であると言える。

もはや、従来の"勘と経験"に頼る手法は通用しない。液体と物質との界面における反応を、分子・原子レベルから解明し理解する科学的な手法が必要不可欠である。ある意味、現代の洗浄技術は、"微細加工"とも言えるのである。

ここに日本の活路がある。 日本には、トップシェアを誇

る液体材料メーカーと装置メーカーが存在する。 この両社と半導体メーカーや大学がコラボレーションし、日本人が得意な摺り合わせ技術をさらに 進化させれば、諸外国と差別化でき、かつ、競争 力のある技術が開発できよう。そのようなイノベーティブな洗浄技術は、日本の装置メーカーのみならず、半導体メーカーの競争力向上にも寄与するはずである。

かつて、プロセス技術には、あるヒエラルキーがあった。エースで4番はリソ技術であり、洗浄技術は9番ライト(または補欠)だった。しかし、半導体のパラダイムは変化した。今後のエースで4番候補は、間違いなく、洗浄技術である。

参考文献

- 1) 湯之上隆:洗浄技術の時代がやってきた、第7回界面 ナノ電子化学研究会 NICE記念講演会予稿(2010.3.18) (本稿はこの論文を基に執筆)
- 2)湯之上隆:世界金融恐慌後の半導体産業の行方、 Electronic Journal (2010.1) pp.49-51
- 3) 湯之上隆:日本半導体敗戦、光文社(2009.8) p.152
- 4) 湯之上隆:日本半導体/製造装置メーカーの共進化/共 退化現象、Electronic Journal (2009.8) pp.42-45
- 5) 湯之上隆:日本半導体/製造装置メーカーの共進化/共 退化現象、Electronic Journal (2009.9) pp.44-47
- 6) 湯之上隆: 世界金融恐慌後の半導体産業の行方、 Electronic Journal (2010.1) pp.157-169